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Summary

Bronchoalveolar lavage (BAL) is widely accepted as a key diagnostic proce-
dure in interstitial lung diseases (ILD). We performed a study to obtain ref-
erence intervals of differential cell patterns in BAL fluid with special attention
to the origin of lavage fluid, e.g. bronchial/alveolar, to atopy and smoking
status and to age of the healthy people. We performed bronchoalveolar lavage
in 55 healthy subjects with known atopy status (age: 18–64 years, non-
smokers/smokers: 34/21) and determined differential cell counts and lympho-
cyte subsets in BAL fluid and blood. Moreover, in a subgroup of non-smoking
healthy individuals we measured the expression of the regulatory T cell
marker forkhead box protein 3 (FoxP3) on blood and BAL fluid lymphocytes
in addition to a comprehensive set of activation markers. Differential cell
counts from the alveolar lavage fraction differed significantly from calculated
pooled fractions (n = 11). In contrast, marginal differences were found
between atopic and non-atopic subjects. Interestingly, the BAL fluid CD4+/
CD8+ ratio correlated strongly with age (r2 = 0·50, P < 0·0001). We consider
the bronchial and alveolar fraction to be lavage fluid from fundamentally
different compartments and recommend analysis of the alveolar fraction in
diagnostic work-up of ILD. In addition, our data suggest that age corrected
BAL fluid CD4+/CD8+ ratios should be used in the clinical evaluation of
patients with interstitial lung diseases.

Keywords: activation markers, age, bronchoalveolar lavage, differential cell
counts, lymphocyte subsets, reference values

Accepted for publication 14 November 2011

Correspondence: J. C. Grutters, Department of

Pulmonology, St Antonius Hospital, PO Box

2500, 3430 EM, Nieuwegein, the Netherlands.

E-mail: j.grutters@antoniusziekenhuis.nl

Introduction

Bronchoalveolar lavage (BAL) has become a widely used
procedure in various clinical settings, including the differen-
tial diagnosis and monitoring of interstitial lung disease
(ILD). BAL fluid cell patterns reflect inflammatory cell pro-
files in affected lung tissues [1] and provide important infor-
mation that can support the diagnosis of specific ILD [2,3],
or exclude other causes of alveolitis. In addition, BAL is used
to document specific exposures, such as the identification of
asbestos bodies or the proliferative response of BAL fluid
lymphocytes to beryllium in chronic beryllium disease
(CBD) [4]. Moreover, BAL may be used to investigate
inflammatory parameters in infection, neoplasms, exposure
to toxic substances, asthma and chronic obstructive pulmo-
nary disease (COPD) [5], and it is useful in monitoring the
lung allograft and in evaluating paediatric lung disease [6].
Additionally, BAL can be diagnostic in some rare disorders,

e.g. histiocytosis X [7] and pulmonary alveolar proteinosis
(PAP) [8].

BAL fluid differential cell counts in ILD usually show
variations that differ from patterns found in normal sub-
jects. In 1974, the first paper detailing BAL dealt with
normal values, as the authors selected normal subjects and
patients undergoing fibreoptic bronchoscopy (FOB) for
‘evaluation of intrathoracic lesions’ [9]. Clinically healthy
controls were included in the study by Van den Bosch and
colleagues, performed in our hospital in 1983 [10]. Many
groups have been investigating BAL in healthy individuals
since then. Issues regarding group size, age, atopy and
smoking status have recently been discussed and reviewed
by Balbi et al. [11]. In addition, there is no consensus on
which fractions of BAL fluid should be used for analysis.
Furthermore, novel markers for immunophenotyping, such
as expression of the integrin CD103 on BAL fluid T cells,
have entered the scene and need proper assessment of
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reference values in healthy subjects [2,12]. In addition,
because activated T lymphocytes play an important role in
the pathophysiology of patients with interstitial lung dis-
eases [13–15], we examined the expression of a compre-
hensive set of activation markers on peripheral blood and
BAL fluid T lymphocyte subsets. Finally, we determined
forkhead box P3 (FoxP3) expression on BAL fluid T cells.
Fox3+-positive regulatory T cells (Tregs) play a major role in
the control of immune responses against self and exog-
enous antigens [16]. Deficient Tregs, functional or in
number, have been reported in different lung diseases
[17–19].

In this study we addressed the following issues regarding
laboratory parameters and its reference intervals in BAL
fluid from healthy human lung: (i) do differential cell
counts of pooled lavage fractions differ from cell counts of
only the alveolar fraction; and (ii) what demographic vari-
ables are of influence on blood and BAL fluid differential
cell counts?

Materials and methods

Study population

A group of 55 healthy volunteers with no prior history of
pulmonary disease were recruited and checked by an expe-
rienced pulmonologist for health status. All subjects were
free of diseases based on clinical history, X-ray and lung
function tests. None of the volunteers used any pulmonary
or anti-inflammatory medication. Bacterial cultures of
bronchoalveolar lavage fractions I and II were negative for
respiratory pathogens in all subjects. None of the volun-
teers experienced allergic symptoms of asthma, rhinocon-
junctivitis or eczema. Atopy status, i.e. the genetic
predisposition to become immunoglobulin (Ig)E-sensitized
to allergens commonly occurring in the environment, was
assessed by measurements of total serum IgE and allergen-
specific IgE (ImmunoCap Phadiatop®, Phadia, Nieuwegein,
the Netherlands) levels [20]. The study was approved by
the institutional medical ethical committee (registration
number: R-06·11A; St Antonius Hospital, Nieuwegein) and
all subjects gave written informed consent. Characteristics,
pulmonary function and serum laboratory parameters of
study subjects are given in Table 1.

Bronchoalveolar lavage

All subjects underwent bronchoscopy and BAL procedure
with a flexible bronchoscope according to internationally
accepted guidelines [21]. The procedure involved pre-
medication (20 mg codeine per os), and local anaesthesia of
the larynx and lower airways (0·5% tetracaine in the
oropharynx, 8 cc 0·5% tetracaine in lower airways). Trans-
cutaneous oxygen saturation was monitored continuously
by oximeter with a finger probe. BAL was performed in the

right middle lobe with a total volume of 200 ml of sterile
isotonic saline solution (37°C). BAL fraction I, returned
after instilling 50 ml of saline, and BAL fraction II,
returned after instilling 3 ¥ 50 ml of saline, were collected
in a siliconized specimen trap and immediately kept on ice.
An aliquot of both fractions was used for bacterial culture.
BAL fluid fractions were filtered through nylon gauze and
centrifuged (10 min at 400 g at 4°C). The cell pellet was
washed twice, counted and resuspended in minimal essen-
tial medium/RPMI-1640 (Gibco, Grand Island, NY, USA),
supplemented with 0·5% bovine serum albumin (Organon,
Teknika, Boxtel, the Netherlands). Cells were counted in a
Bürker chamber. Cell yield was determined by total cell
number per fraction/total recovered volume per fraction.
Cell viability was determined by Trypan blue exclusion.
Smears for cell differentiation were prepared by cytocen-
trifugation (Shandon, Runcorn, UK). Cell differentiation
was performed by microscopy on cytospinslide after stain-
ing with May–Grünwald–Giemsa (Merck, Darmstadt,
Germany); at least 2 ¥ 500 cells were counted (Fig. 1). In all

Table 1. Characteristics, pulmonary function and serum laboratory

parameters of study subjects.

Parameter Subjects (n = 55)

Sex (M/F) 29/26

Age† 22 (18–64)

Non-smoker/smoker [pack y] 34/21 [9·6 (2·4)]

Non-atopic/atopic‡ 45/10

FEV1 (% pred) 106 (2)

FVC (% pred) 111 (2)

FEV1/FVC (¥100) 95 (1)

Serum IgA (g/l)†§ 1·97 (1·05–3·93)

Serum IgM (g/l)†§ 0·96 (0·25–2·14)

Serum IgG (g/l)†§ 10·5 (6·73–13·7)

Albumin (g/l)†§ 46 (38–50)

CRP (mg/l) 3

Data are presented as mean (standard error) or as stated otherwise.
†Data are presented as median (range). ‡Atopy status was determined by

measuring total serum immunoglobulin (Ig)E �200 kU/l and/or

allergen-specific IgE (Phadiatop®) �2·5). §Data were not significantly

different from established reference intervals. CRP, C-reactive protein;

FEV1, forced expiratory volume in 1 s as percentage of normal predicted

value; FVC, forced vital capacity as percentage of normal predicted

value; FEV1/FVC, ratio of FEV1 to FVC.

Fig. 1. Representative pictures of cell composition of bronchoalveolar

lavage (BAL) fraction I (left) and II (right). L: lymphocyte; M:

macrophage; E: eosinophil; Ep: epithelial cell; N: neutrophil.
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subjects bronchoscopy and BAL was well tolerated. The cell
counts and established reference intervals in Table 2 are
based on BAL fluid fraction II.

Peripheral blood

Before the BAL procedure, peripheral blood was drawn for
routine analysis of leucocyte cell differentiation (LH750
analyser, Beckman Coulter, Mijdrecht, the Netherlands) and
serum analytes [IgA, IgM, IgG (Immage 800, Beckman

Coulter), albumin and C-reactive protein (CRP) (Cobas C
501, Roche Diagnostics, Almere, the Netherlands)].

Flow cytometry

To determine lymphocyte subsets in peripheral blood and
BAL cellular fraction, cells were labelled with monoclonal
fluorochrome conjugated antibodies directed against CD3,
CD4, CD8, CD19, CD45, CD(16+56) and CD103 [Becton
Dickinson (BD) Biosciences, Alphen aan den Rijn, the

Table 2. Differential cell counts and lymphocyte subpopulations in blood and bronchoalveolar lavage (BAL) fluid in adults (18–64 years).

Non-smokers Peripheral blood† Bronchoalveolar lavage

n = 34 #‡ % % #§

Leucocytes

58 (46–69) Recovery

5·6 (3·9–7·3) 9·8 (4·7–18·0) Cells/ml

95 (90–98) Vitality

Monocytes 0·4 (0·3–0·8) 7·8 (6·2–12·8) 85·4 (65·3–95·4) 7·5 (4·1–15·9) Macrophages

Lymphocytes 1·7 (1·3–2·4) 33·9 (23·3–41·5) 11·7 (3·0–32·4) 0·9 (0·3–3·7) Lymphocytes

Neutrophils 3·0 (2·0–4·7) 54·6 (46·6–62·9) 1·3 (0·2–4·3) 0·2 (0–0·4) Neutrophils

Eosinophils 0·14 (0·05–0·29) 2·6 (1·1–4·8) 0·3 (0·1–3·5) 0·03 (0·01–0·33) Eosinophils

Basophils 0·03 (0·02–0·08) 0·6 (0·3–1·8) 0 (0–0·2) 0 (0–0·03) Basophils

0 0 Plasma cells

CD3+ 1·3 (0·9–2·0) 76 (69–85) 95 (90–98) 0·9 (0·3–3·5) CD3+

CD4+ 0·8 (0·6–1·4) 47 (37–61) 54 (35–79) 0·5 (0·2–1·7) CD4+

CD8+ 0·4 (0·2–0·6) 24 (15–35) 36 (15–57) 0·3 (0·04–1·7) CD8+

CD4+/CD8+ 1·9 (1·2–3·8) 1·5 (0·6–5·5) CD4+/CD8+

CD19+ 0·2 (0·1–0·4) 12 (8–20) 2 (0·5–3) 0·02 (0·004–0·09) CD19+

CD3-CD16+CD56+ 0·2 (0·1–0·4) 10 (4–17) 5 (2–8) 0·04 (0·02–0·15) CD3-CD16+CD56+

36 (24–55) 0·35 (0·08–1·77) CD103+

0·15 (0·05–0·27) CD103+CD4+/CD4+

0·7 (0·3–3·0) BAL/PB CD4+/CD8+

Smokers Peripheral blood† Bronchoalveolar lavage

n = 21 #‡ % % #§

Leucocytes

55 (37–65) Recovery

7·1 (4·7–9·0) 19·7 (8·1–45·5) Cells/ml

95 (87–98) Vitality

Monocytes 0·5 (0·5–0·8) 8·3 (6·2–10·1) 96·1 (79·0–98·4) 19·0 (7·3–44·7) Macrophages

Lymphocytes 2·0 (1·5–2·8) 30·9 (20·3–45·9) 2·3 (0·7–16·5) 0·5 (0·2–1·7) Lymphocytes

Neutrophils 4·1 (2·0–5·8) 60·5 (39·2–69·2) 0·9 (0·4–3·1) 0·2 (0–0·7) Neutrophils

Eosinophils 0·16 (0·08–0·32) 2·3 (1·2–5·3) 0·2 (0–1·3) 0·05 (0–0·25) Eosinophils

Basophils 0·03 (0·02–0·07) 0·4 (0·3–0·9) 0 (0–0·5) 0 (0–0·07) Basophils

0 0 Plasma cells

CD3+ 1·5 (1·2–2·1) 77 (66–83) 96 (87–99) 0·6 (0·3–1·5) CD3+

CD4+ 1·0 (0·6–1·4) 46 (39–61) 44 (25–58) 0·2 (0·1–0·6) CD4+

CD8+ 0·5 (0·3–0·8) 23 (17–32) 46 (34–70) 0·2 (0·1–0·9) CD8+

CD4+/CD8+ 1·9 (1·4–3·4) 0·9 (0·4–1·5) CD4+/CD8+

CD19+ 0·3 (0·1–0·4) 13 (7–19) 1 (0·1–2) 0·005 (0–0·05) CD19+

CD3-CD16+CD56+ 0·2 (0·1–0·4) 8 (4–14) 5 (1–12) 0·02 (0·01–0·11) CD3-CD16+CD56+

41 (30–68) 0·19 (0·04–0·70) CD103+

0·19 (0·07–0·41) CD103+CD4+/CD4+

0·4 (0·1–1·3) BAL/PB CD4+/CD8+

Differential cell counts and lymphocyte subpopulations, and established reference intervals in BAL fluid fraction II. Values are expressed as median

(10th–90th percentiles). †Reference intervals in peripheral blood did not differ significantly from the established reference intervals used in our hospital

[27]; ‡¥106 cells/ml. §¥104 cells/ml.
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Netherlands]. In a subgroup of non-smoking healthy indi-
viduals, additional staining was performed with antibodies
directed against CD25, CD28, CD69, very late antigen-1
(VLA-1) and FoxP3 (BD Biosciences). Flow cytometry was
performed according to standard protocols and within 24 h
of fixation to detect and quantify labelled cells [fluorescence
activated cell sorter (FACS)Calibur, Becton Dickinson]. At
least 100 000 events were analysed with FlowJo software
(Tree Star, Inc., Ashland, OR, USA).

Statistical analysis

The majority of differential cell counts/lymphocyte subset
values were not normally distributed. The cell counts and
established reference intervals are expressed as median
(10th–90th percentiles). The Mann–Whitney U-test was
used to compare peripheral blood (PB) and BAL fluid cell
populations. Correlations between different variables were
determined using Spearman’s rank coefficient. We compared
the distribution of cell populations in fractions I and II as
well as fraction II with calculated pooled fractions (I + II)
using the paired t-test. The absolute cell counts and the
percentages of different cell populations in the pooled frac-
tions were calculated according to the following formulae:

Absolute cell population numbers (104/ml):

cell population fraction I cell yield fraction I cell%( ) × 106 ss

cell population fraction II cell yield fraction I

( ) +[
( ) ×% II cells

recovery fraction I ml recovery fraction II m

106( )]
( ) + ll( )[ ]

Proportion of cell population (%):

cell population fraction I cell yield fraction I cell%( ) × 106 ss

cell population fraction II cell yield fraction I

( ) +[
( ) ×% II cells

cell yield fraction I cells cell yield fr

10

10

6

6

( )]
( ) + aaction II cells106( )[ ]

The statistical evaluation of our data was performed using
PASW statistics 17·0 (SPSS, Inc., Chicago, IL, USA) and
Graphpad Prism version 5 (Graphpad Software, Inc., San
Diego, CA, USA) software packages.

Results

Differential cell counts and lymphocyte subpopulations
in BAL fluid and in blood

Smoking significantly affects BAL fluid cell profiles in differ-
ent lung diseases [22–26]. Here we provide separate refer-
ence intervals of BAL fluid differential cell counts and
lymphocyte subpopulations for non-smokers and smokers
(Table 2). Reference values for the BAL fluid CD103+CD4+/
CD4+ ratio and the BAL/PB CD4+/CD8+ ratio, a potential
new diagnostic marker in interstitial lung diseases [2,12], are

summarized in Table 2. Peripheral blood differential cell
counts and lymphocyte subpopulations did not differ from
reference intervals used in our hospital [27].

Differential cell counts in fraction I and fraction II

Some investigators have considered the first aliquot as rep-
resenting predominantly bronchial airway cells and secre-
tions and have kept this aliquot separate, whereas subsequent
sequential aliquots (usually three to four in number) are
considered more representative of distal airspaces (‘alveolar
sampling’) and pooled for subsequent cellular analysis
[28,29]. Other centres pool all retrieved BAL aliquots prior
to submitting BAL for laboratory analysis. Table 3 illustrates
a different cell distribution between fraction I and fraction
II, indicating sampling of different airway compartments.

Figure 2 illustrates BAL fluid cell counts if fractions I
and II would have been pooled compared with the corre-
sponding cell counts of only fraction II in 11 healthy non-
smokers. Pooling resulted in lower absolute macrophage and
lymphocyte counts (P = 0·008 and P = 0·04, respectively).
Borderline significance was observed for the percentage
of lymphocytes (P = 0·05). Neutrophil and eosinophil cell
counts revealed no differences comparing the pooled
fractions and fraction II.

Therefore, in healthy subjects, fractions I and II have a
different cell distribution and dilution of fraction II with
fraction I has a substantial effect on cell counts. Together,
these results indicate that fractions I and II should not be
pooled.

Correlation of demographic variables with blood and
BAL fluid composition

Age. The influence of age on BAL cell composition has been
a subject of considerable debate [30]. Analysis of correlations
between age and differential cell counts or lymphocyte
subsets showed strong positive and negative correlations
between age and, respectively, the percentage of CD4+ and
CD8+ BAL fluid lymphocytes and subsequently the BAL fluid
CD4+/CD8+ ratio in healthy non-smokers (r 2 = 0·50,
P < 0·0001) (Fig. 3). This effect could be ascribed to lower
absolute BAL fluid CD8+ cells [>40 years versus <30 years,
median (range); 0·2 (0·02–1·1) versus 0·5 (0·1–2·7),
P < 0·0001] along with similar BAL fluid CD4+ cell numbers
[0·4 (0·1–3·7) versus 0·5 (0·1–3·3)]. A resembling pattern was
observed in lymphocyte subset counts in peripheral blood
comparing the two age groups: lower absolute CD8+ cells and
similar absolute CD4+ cell numbers [0·3 (0·2–0·6) versus 0·5
(0·3–0·9), P = 0·01 and 0·8 (0·5–1·6) versus 0·8 (0·5–1·4),
respectively]. Moreover, the CD103+CD4+/CD4+ ratio
(Fig. 3) correlated positively with age and the recovery of the
alveolar fraction correlated negatively with age (r 2 = 0·21,
P = 0·006). We found no confounding effect of the recovery
of the alveolar BAL fraction on the described parameters.

M. Heron et al.
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None of the other parameters correlated strongly with age
(data not shown).

Atopy. In western countries, atopy seems increasingly
present in the general population and its presence is relevant
for all the biological methodologies [11]. Marginal differ-
ences were found between subjects with increased and
subjects with normal IgE/phadiatope values comparing dif-
ferential cell counts or lymphocyte subsets. In BAL fluid,
only the percentage of neutrophils was significantly higher in
atopic individuals who smoked (P = 0·01). In peripheral
blood, IgA and albumin levels were higher in atopic smokers
(P = 0·04 and P = 0·03), but still within the established ref-
erence intervals. The percentage of circulating monocytes

and basophils and the absolute monocyte counts were higher
in atopic non-smokers (P = 0·02, P = 0·02, and P = 0·01,
respectively).

Smoking status. Smokers had increased absolute cell
numbers in BAL fluid (P < 0·0001). In addition, the per-
centage of macrophages was higher, resulting in a three-
fold higher number of macrophages in smokers compared
to non-smokers. Furthermore, smokers had lower percent-
ages of lymphocytes (P < 0·0001), CD19+ cells (P = 0·0004)
and CD4+ cells (P = 0·006) and a higher percentage of CD8+

cells (P = 0·005). Consequently, the CD4+/CD8+ ratio in
BAL fluid of smokers was lower compared to non-smokers
(P = 0·005).

Table 3. Bronchoalveolar lavage (BAL) fluid cell percentages of fraction I versus fraction II in adults (18–64 years).

Non-smokers Fraction I Fraction II

P-value*n = 34 % %

Macrophages 85·0 (61·2–95·3) 85·4 (65·3–95·4) n.s.

Lymphocytes 5·2 (1·1–21·6) 11·7 (3·0–32·4) <0·0001

Neutrophils 4·9 (1·1–25·9) 1·3 (0·2–4·3) 0·001

Eosinophils 0·2 (0–7·6) 0·3 (0·1–3·5) n.s.

Basophils 0 (0–0·3) 0 (0–0·2) n.s.

Plasma cells 0 0 n.s.

Smokers Fraction I Fraction II

P-value*n = 21 % %

Macrophages 91·7 (75·5–98·0) 96·1 (79·0–98·4) n.s.

Lymphocytes 1·9 (0·2–8·5) 2·3 (0·7–16·5) n.s.

Neutrophils 4·8 (0·8–15·7) 0·9 (0·4–3·1) 0·001

Eosinophils 0·4 (0–3·3) 0·2 (0–1·3) n.s.

Basophils 0·1 (0–0·6) 0 (0–0·5) n.s.

Plasma cells 0 0 n.s.

*Difference between fraction I and II. Data are presented as median (10th–90th percentiles). n.s., not significant.

Fig. 2. Bronchoalveolar lavage (BAL) fluid

differential cells counts from pooled fractions

(calculated) versus corresponding fractions II in

healthy non-smokers (n = 11). The relatively

high neutrophil percentages (*) and eosinophil

counts (**) are from atopic individuals.
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In peripheral blood, the main difference observed between
smokers and non-smokers was a higher absolute leucocyte
count (P = 0·0002) and a higher percentage and number of
neutrophils (respectively, P = 0·03 and P = 0·0004).

Gender. No significant differences were observed between
males and females of any parameter measured (data not
shown).

Expression of activation markers and FoxP3 on blood
and BAL fluid lymphocytes

Expression of activation markers on lymphocytes. Table 4 pre-
sents the percentage of peripheral blood and BAL fluid CD4+

and CD8+ T lymphocytes that expressed activation markers.
CD69 and VLA-1 expression was higher on CD4+ and CD8+

BAL fluid cells compared to corresponding PB lymphocytes.
Moreover, CD8+CD25+ cells were increased in BAL fluid
compared to blood. Finally, CD28 expression was decreased
on BAL fluid lymphocyte subsets versus PB lymphocyte
subsets.

Naturally occurring regulatory T cells in blood and BAL fluid.
Both the median fluorescence intensity of FoxP3 on CD4+

cells and the percentage of CD4+FoxP3+ cells were higher in
BAL fluid samples versus PB samples (Fig. 4 and Table 4).

Discussion

We established reference intervals of commonly or increas-
ingly used cellular inflammation markers in BAL fluid in a
group of healthy adults. Strong correlations were found
between age and BAL fluid lymphocyte subsets. This may

suggest the use of age corrected CD4+/CD8+ ratios in the
clinical evaluation of patients with interstitial lung diseases.
Finally, we showed that pooling of bronchial and alveolar
fractions significantly alters some cell differential counts
compared to cell counts of the sole alveolar fraction.

In 1983, healthy volunteers were included in the study by
Van den Bosch and colleagues performed in our hospital. No
significant differences were observed between leucocyte dif-
ferential cells counts in BAL fluid comparing results from
1983 and the current study [10]. Regarding the overlapping
reference values presented by the BAL Cooperative Group
Steering Committee [25], they were similar to cell counts
described in our study. Of interest, none of the 55 subjects
had plasma cells in their BAL fluid (Table 2), underscoring
the diagnostic value of finding a plasma cell in BAL fluid
[31]. Finally, BAL fluid cell counts were not substantially
different between atopic and non-atopic healthy individuals.

Detailed analysis comparing cell counts of ‘pooled’ BAL
fluid fractions (fractions I and II) with ‘alveolar’ fractions
(fraction II) has not been published for disease, nor for
healthy subjects. We demonstrated a different cell distribu-
tion in the bronchial and alveolar BAL fractions, indicating
different airway compartments. These results are consistent
with BAL fluid data in children described by Pohunek et al.
[32]. Moreover, considering the significant differences we
found for macrophage and lymphocyte cell counts between
the pooled and alveolar samples, analysis of only the alveolar
fraction instead of the pooled fractions is recommended in
diagnostic work-up of ILD patients. In addition, this
approach prevents contamination with commensal throat
flora, epithelial cells and proteins such as lactoferrin and
lysozyme from the bronchial fraction and may prevent alter-
ation of cytokine and chemokine distribution from alveolar
samples [29,33].

Although there is considerable information concerning
systemic immune responses and how these change with
aging, relatively little is known about compartmentalized
immune surveillance in the lung. Here we show that the BAL
fluid CD4+/CD8+ ratio correlated strongly with age. This is
consistent with data described by Meyer et al. [34]. However,
in contrast with their data, we found that the increase of the
CD4+/CD8+ ratio in elderly subjects was due to a decrease of
absolute CD8+ cells instead of an increase of CD4+ cells. The
decrease of absolute CD8+ numbers, in blood and BAL fluid,
may represent the general decline of absolute T cell numbers
with advancing age, in particular circulating naive CD8+ T
cells [35]. Absolute BAL fluid CD4+ lymphocyte numbers,
however, did not decrease with advancing age. In the lung
this might be explained by relative accumulation of memory
CD4+ T cells due to cumulative antigenic stimulation at
mucosal surfaces [36]. In agreement with the latter, a strong
positive correlation was found between age and the propor-
tion of BAL fluid CD4+ lymphocytes that expressed the
mucosal integrin CD103, which is believed to play a key role
in retention of lymphocytes in mucosal epithelial tissues
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[37,38]. This CD103+CD4+/CD4+ ratio has been proposed as
a potential novel diagnostic marker for sarcoidosis [12] and
has been evaluated recently by our group [2].

Accumulation in the lung of lymphocytes with an acti-
vated phenotype has been described in T cell-mediated pul-
monary inflammation [13,39,40]. Our data showed that T
lymphocytes from BAL fluid of healthy controls expressed
similar high levels of lymphocyte activation markers (CD69
and VLA-1), while these markers were not expressed on cor-
responding peripheral blood lymphocytes. Moreover, the
expression of the nuclear transcription factor FoxP3, a
master switch for regulatory T cells, was higher on BAL fluid
lymphocytes than peripheral blood T cells. Our data support
the concept of compartmentalization of immune cell popu-
lations in non-lymphoid peripheral tissue under non-
inflammatory conditions. The CD69+VLA-1+ T cell

Table 4. Expression of activation and regulatory surface markers on PB and bronchoalveolar lavage (BAL) fluid CD4+ and CD8+ lymphocytes from

non-smoking healthy controls†.

Markers PB BAL P-value

CD4+ lymphocytes

CD25

(%) 45·4 (32·3–73·1) 47·0 (34·0–60·1) n.s.

(MFI) 66 (55–93) 63 (53–89) n.s.

CD28

(%) 99·9 (95·5–100) 94·1 (80·5–98·2) 0·0006

(MFI) 808 (621–989) 641 (121–871) 0·005

CD69

(%) 2·9 (1·3–14·7) 69·8 (51·8–78·5) <0·0001

(MFI) 30 (29–38) 79 (48–449) <0·0001

VLA-1

(%) 3·2 (0·7–15·1) 26·9 (15·4–53·6) <0·0001

(MFI) 22 (21–22) 63 (45–131) <0·0001

FoxP3

(%) 7·2 (3·8–10·4) 9·4 (5·2–14·1) 0·007

(MFI) 32 (14–71) 122 (45–173) <0·0001

CD8+ lymphocytes

CD25

(%) 6·3 (4·0–23·6) 19·2 (9·7–27·1) 0·0014

(MFI) 35 (24–42) 31 (28–41) n.s.

CD28

(%) 85·3 (63·5–96·3) 65·1 (44·7–78·7) 0·0004

(MFI) 506 (378–746) 212 (72–354) <0·0001

CD69

(%) 3·3 (1·8–19·0) 84·4 (75·2–91·7) <0·0001

(MFI) 39 (32–58) 69 (43–172) 0·0001

VLA-1

(%) 3·8 (0·9–20·7) 80·1 (58·2–88·4) <0·0001

(MFI) 20 (19–21) 189 (80–423) <0·0001

FoxP3

(%) 2·6 (1·4–6·1) 1·6 (0·6–5·6) 0·02

(MFI) 46 (36–60) 55 (36–97) 0·03

†n = 14, age = 30 (20–62). The expression of activation and regulatory surface markers was determined on lymphocytes from BAL fluid fraction II.

Data are presented as median (10th–90th percentiles). FoxP3, forkhead box protein 3; MFI, median fluorescence intensity of the positive fraction; PB,

peripheral blood; VLA, very late antigen-1.
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phenotype and the increased expression of FoxP3 on BAL
fluid T cells may be a consequence of the continuous expo-
sure of the respiratory tract to environmental antigens. In
contrast to FoxP3+ cells, we showed recently that invariant
NKT cell numbers were not compartmentalized in lungs
from healthy adults [41], suggesting different roles of both
immunoregulatory T cells in immune surveillance in periph-
eral tissue.

In summary, we recommend analysis of BAL fraction II in
the diagnostic work-up of ILD patients. We established ref-
erence intervals of commonly and increasingly used cellular
markers in this (alveolar) fraction of BAL fluid in a group of
well-characterized healthy adults; age-related changes in dif-
ferential cell counts, in particular T lymphocyte subsets,
suggest that care must be taken to consider age when anal-
ysing BAL samples for clinical evaluation of interstitial lung
diseases. The analytical validation of laboratory tests and
pre-analytical standardization of BAL are prerequisites for
further clinical validation and utility of BAL in interstitial
lung diseases.
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